47 research outputs found

    Model-Checking-based vs. SMT-based Consistency Analysis of Industrial Embedded Systems Requirements: Application and Experience

    Get PDF
    Industry relies predominantly on manual peer-review techniques for assessing the correctness of system specifications. However, with the ever increasing size, complexity and intricacy of the specifications, it becomes difficult to assure their correctness with respect to certain criteria such as consistency. To cope with this challenge, a set of techniques based on formal methods, called \textit{sanity checks} have been proposed to automatically assess the quality of system specifications in a systematic and rigorous manner. The predominant way of assessing the sanity of system specifications is by model checking, which in literature is reported to be expensive for analysis as it takes a long time for the procedure to terminate. Recently, another approach for checking the consistency of a system's specification using Satisfiability Modulo Theories has been proposed in order to reduce the analysis time. In this paper, we compare the two approaches for consistency analysis, by applying them on a relevant industrial use case, using the same definition for consistency and the same set of requirements. The comparison is carried out with respect to: i) time for generating the model and the latter's complexity, and ii) consistency analysis time. Contrary to the currently available data, our preliminary results show no significant difference in analysis time when applied on the same system specification under the same definition of consistency, but show significant difference in the time of creating the model for analysis

    Adaptive Task Automata with Earliest-Deadline-First Scheduling

    Get PDF
    Adjusting to resource changes, dynamic environmental conditions, or new usage modes are some of the reasons why real-time embedded systems need to be adaptive. This requires a rigorous framework for designing such systems, to ensure that the adaptivity does not result in invalidating the system’s real-time constraints. To address this need, we have recently introduced adaptive task automata, a framework for modeling, verification, and schedulability analysis in adaptive, hard real-time embedded systems, assuming a fixed-priority scheduler. In this work, we extend the adaptive task automata framework to incorporate the earliest-deadline-first scheduling policy, as well as enable implementation of any other dynamic scheduling policy. To prove the decidability of our model, and at the same time maintain a manageable degree of conciseness, we show an encoding of our model as a network of timed automata with clock updates. To support this, we also show that reachability in our class of timed automata with updates is decidable. Our contribution helps to streamline the process of designing safety critical adaptive embedded systems

    Analyzing a Pattern-Based Model of a Real-Time Turntable System

    Get PDF
    AbstractDesigners of industrial real-time systems are commonly faced with the problem of complex system modeling and analysis, even if a component-based design paradigm is employed. In this paper, we present a case-study in formal modeling and analysis of a turntable system, for which the components are described in the SaveCCM language. The search for general principles underlying the internal structure of our real-time system has motivated us to propose three modeling patterns of common behaviors of real-time components, which can be instantiated in appropriate design contexts. The benefits of such reusable patterns are shown in the case-study, by allowing us to produce easy-to-read and manageable models for the real-time components of the turntable system. Moreover, we believe that the patterns may pave the way toward a generic pattern-based modeling framework targeting real-time systems in particular

    Synchronization Can Improve Reactive Systems Control and Modularity

    No full text
    We concentrate on two major aspects of reactive system design: behavior control and modularity. These are studied from a formal point of view, within the framework of action systems. The traditional interleaving paradigm is completed with a barrier synchronization mechanism. This is achieved by introducing a new parallel composition operator, applicable to bot h discrete and hybrid models. While offering improvements with respect to control and modularity, the approach uses the correctness preserving mechanisms provided by the underlying reasoning environment 1. 1) A shorter version of this study appeared as "Modular Design of Reactive Systems", in Proceedings of the 28th Annual International Computer Software and Applications Conference (COMPSAC 2004), IEEE Computer Society Press, September 2004, Hong Kong. Pages 265-271
    corecore